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Abstract. Simulations of the AC electrical characteristics of 2D square networks randomly filled
with resistors or capacitors exhibit many features in common with experimental dielectric responses
of solids. These include the ‘universal’ fractional power law dispersions in permittivity and
dielectric loss characterized by the Cole–Davidson response function. Simulations are presented
of networks containing different proportions of resistors and capacitors which show that the power
law frequency response is accounted for well by the logarithmic mixing rule. Limiting high and
low frequency characteristics are found to be controlled by percolation paths of either resistors or
capacitors. It is suggested that the power law response of a solid could be an indication that it is
microscopically inhomogenous, containing an effective microscopic random network of conducting
and dielectric insulating islands.

1. Introduction

The dielectric properties of solids across the radio frequency range (∼1 Hz to∼10 MHz) have
long been attributed to the contributions of microscopic dipolar, or dipolar-like, components to
the total dielectric response. The basis of the most commonly used theoretical interpretation
of the phenomena is Debye’s model [1] which was devised to explain the dielectric response
of viscous liquids containing freely floating dipoles. This model predicted the complex dipole
permittivity, ε∗(ω), to be the following simple function of the parameterωτ :

ε∗(ω) = ε′(ω) + iε′′(ω) = 1ε

1 + iωτ
= 1ε

1 +ω2τ 2
− i

1εωτ

1 +ω2τ 2
(1)

in which ωτ is the product of measurement angular frequency and a characteristic dipole
relaxation time and1ε = ε(0) − ε∞ is the difference between the static permittivity and
that at an ‘infinitely high’ frequency, far exceeding the response rates of the dipoles. The
ωτ dependence of the real and imaginary components of permittivity are shown, plotted
logarithmically, in figure 1(a). At low frequency (ωτ � 1) dipole relaxation rate,τ−1,
far exceeds the applied frequency and a full dipolar contribution to permittivity is predicted.
At high frequency (ωτ � 1) the applied frequency far exceeds dipole relaxation rate and
dipoles are unable to respond rapidly enough to contribute to permittivity, resulting in the high
frequency decrease in dipolar permittivity. At intermediate frequencies (ωτ ∼ 1) there is a
partial contribution to the real part of the permittivity and a characteristic peak in the imaginary,
dielectric loss, part. The latter peaks atωτ = 1, providing the well known and widely used
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(a)

(b)

Figure 1. (a) The Debye dielectric response function, equation (1), and (b) the Cole–Davidson
dielectric response function, equation (3) forβ = 0.4, plotted logarithmically againstωτ .

means of assessing dipole relaxation time,τ , by locating the frequency at which dielectric loss
peaks.

In the classical Debye theory the relaxation time,τ , arises from the retarding effect that
the viscosity of a liquid has on the rotation of a floating dipole. A similar term is necessary to
account for dipolar response in a solid where dipoles are taken to respond to an applied electric
field by rotation between a series of allowed orientations that are separated by activation energy
barriers. Dipolar rotation is considered to be a thermally activated process and dipole relaxation
time is expected to vary with temperature as:

τ = τ0 exp(EA/kT ) (2)
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whereEA is the activation energy,k is the Boltzmann constant andτ0 is the inverse of the
‘attempt frequency’ for a dipole confined in a potential well of depthEA. Hence the activation
energy for a dipolar rotation may be obtained by an Arrhenius analysis of the temperature
dependence of relaxation times, determined from dielectric loss measurements. It is well
known that dielectric measurements of solids have been extensively exploited in this way.
However, it is also well known that the actual dielectric response of the majority of solids
is only broadly similar to that indicated by equation (1) and shown in figure 1(a). Whilst
permittivity is a decreasing function of frequency and dielectric loss passes through a peak,
the functional forms of these frequency dependences seldom match the Debye expressions.
Dielectric loss peaks are usually found to be far broader in frequency than predicted by Debye
and the high frequency (ωτ � 1) tails of both permittivity and dielectric loss are found to
decay as a power of frequency (∝ ω−n with 0 < n < 1). Davidson and Cole [2] suggested
an empirical modification to the Debye expression which has been found to provide a better
representation of experimental data obtained from dielectric solids:

ε∗(ω) ∝ 1

(1 + iωτ)β
(3)

in which 0< β < 1. An example of the of theωτ dependences of permittivity and dielectric
loss modelled by the Cole–Davidson function is shown in figure 1(b), for comparison with the
Debye expression, figure 1(a). The principal difference is that the Cole–Davidson expression
reproduces the widely observed common power law decay of permittivity and dielectric loss
whilst the original Debye expression has them decaying with frequency asω−2 andω−1,
respectively.

There have been a very large number of theoretical explanations of the experimentally
observed ‘universal’ dielectric response, references to many of which can be found in reviews
[3] and [4] by Jonscher. The majority of these explanations can be divided into two classes:
Debye relaxation models with distributions of relaxation times (DRT) and models employing
fundamentally modified atomic level relaxation processes [5–7]. It is well known [8, 9] that
the DRT approach can be used successfully to model data and that this merely transforms the
problem from explaining a universal frequency dependence to explaining a universal relaxation
time or activation energy distribution for dipole rotation or other dielectric relaxation processes.
We believe that a major objection to the modified relaxation processes, atomic level, models
is the ubiquity of the observed dielectric response phenomena. This ubiquity extends across
relaxation species, covering dielectric phenomena attributable to electronic, atomic, ionic,
molecular and macro-molecular relaxation. The characteristic response is found in all classes
of materials, including: single crystals, polycrystalline samples, glasses, polymers, composites
and semiconductors. Very similar response phenomena are also found in measurements
obtained by a range of other techniques, such as: mechanical relaxation; viscoelasticity; AC
conductivity; electrical noise and NMR. It is natural to seek a common explanation for all
the phenomena and the modified relaxation process models seem to be far too specific to a
particular class of material, a particular phenomenon or a particular scale of relaxation.

There is a long tradition of modelling the electrical responses of solids by combinations of
resistors and capacitors. Early workers [10–12] introduced a number of parallel coupledR–C
circuit elements coupled in series to represent multiple phases or the effects of grain boundary
interfaces. However, because these provided a poor representation of the experimental data,
progressively more complex arrays ofR–C elements have been utilized. Coverdaleet al [13]
have developed large networks of components using materials microstructures to determine
component values and connections. Work such as this has been more successful in reproducing
observed electrical response characteristics but it has failed to clarify the physical origins of
the power laws.
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The purpose of this paper is to draw attention to the similarity between the dielectric
responses of a large random networks of resistors and capacitors and the near universal
dielectric response of solids that has been outlined above. This similarity leads to the possibility
that many of the samples that have been examined using dielectric measurements were
inhomogenous with internal regions of both insulating dielectric and electrically conducting
material arranged as a microscopic random network.

2. The AC electrical response of a randomR–C network

Truong and Teran [14] provided both experimental and theoretical evidence to support the
suggestion that the dielectric properties of a solid might be closely linked to those of a random
R–C network. They found the high frequency dielectric permittivity and dielectric loss of
conducting polymers to exhibit power law dispersions similar to those arising from the Cole–
Davidson expression, equation (3) shown in figure 1(b). These polymers contained a network of
macroscopic conducting particles introduced into an insulating polymer matrix. It was argued
that a suitable representation was a randomly connected network of resistors and capacitors.
The randomness of the connections ensures that locally within the sample it is equally likely
to find components connected in series as in parallel. For such a network, the macroscopic
impedance or admittance may be estimated by the logarithmic mixing rule [15]:

ln σ ∗ =
∑
n

αn ln σ ∗n

σ ∗ =
∏
n

(σ ∗n )
αn (4)

in whichσ ∗ is the measured complex conductivity of the network,σ ∗n andαn are the complex
conductivity and volume fraction of thenth component, respectively. The plausibility of this
formula [15, 16] is indicated by noting that the equivalent formula for components all connected
in parallel is:

(σ ∗)ν =
∑

αn(σ
∗
n )
ν with ν = +1

whilst that for series connected components is

(σ ∗)ν =
∑

αn(σ
∗
n )
ν with ν = −1

then the appropriate formula, equation (4), for randomly series–parallel connected components
is obtained ifν → 0, noting

∑
αn = 1.

Alternatively, for a binary system, the formula can be obtained from the need for invariance
under the interchange of conductivities and volume fractions [17, 18] and in the case of
equal proportions of the two component phases the formula has been shown to be rigorously
exact [19]. The logarithmic mixing rule for the two component system is also known as
Lichtenecker’s rule [20] which has recently been revived in the evaluation of the dielectric
response of a binary system [21].

The importance of the logarithmic mixing rule here is that it leads to power law frequency
dependences of permittivity and dielectric loss of the types obtained from the Cole–Davidson
expression, equation (3), at high frequencies. If it is postulated that a dielectric is composed
of a random microscopic network of purely dielectric and purely conductive material, of
permittivity ε and conductivityσ , respectively,

σ ∗(ω) = (iωεε0)
ασ 1−α ∝ (iω)α

ε∗(ω) = σ ∗(ω)/iωε0 ∝ (iω)α−1 (5)
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Figure 2. A SIMetrix network of 200 randomly placed resistors and capacitors and the external
circuit used to obtain AC response characteristics.

which is of the same form as the power law term arising from equation (3) forωτ � 1 shown in
figure 1(b). The interpretation of the power law exponent,α, is that it represents the proportion
of the material that is purely capacitive. This interpretation was advanced by Truong and Teran
[14] to explain the AC response of their conducting polymers.

3. RandomR–C network simulations

Work on the AC electrical characteristics of randomR–C networks was reviewed by Clerc
et al [18]. Much of this has concentrated on developing an understanding of networks with
compositions that are close to the percolation threshold. In this work we are concerned with
more general compositions that provide an overall capacitive response but which include a
smaller proportion resistive components.

Simulations were performed using commercial SIMetrix [22] software which employs
simulation algorithms from SPICE version 3f.5. Typically, simulations of network response
were obtained across the frequency range 1 Hz to 1 GHz at ten points in each decade of the
frequency spectrum. An example of a 2D square network randomly filled with resistors and
capacitors, to be referred to below as a ‘randomR–C network’ for brevity, is shown in figure 2.
This network which contains only 200 components is reproduced here as an illustration of the
type of network that has been analysed. The networks used for the majority of the simulations
contained 512 components, 1 k� resistors or 1 nF capacitors in a specified proportion, randomly
placed in the network. Results of simulations from networks containing significantly fewer
(170) and significantly larger (2024) numbers of components were found to differ little and to
exhibit the same principal characteristics, discussed below, that are the subject of this work.
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(a)

(b)

Figure 3. (a) The effective permittivity and dielectric loss of a random network of 512 components
of which 60% were 1 nF capacitors and 40% were 1 k� resistors. (b) The phase–frequency
dependence of the voltage developed across the network. The dashed lines shows the logarithmic
mixing formula, equation (5), prediction for the network. (c) A comparison of the frequency
dependences of the AC conductances of a 1 nFcapacitor and a 1 k� resistor.

The effects of network size are considered in more detail below. The 100 M� external resistor,
figure 2, was placed in series with the AC voltage source to provide a constant AC current
source. The earth andVout line represent the electrodes on the two sides of a sample. It was
found that large networks of predominantly capacitive components contained a number of
‘floating nodes’ which prevented the simulation programme from establishing a full set of DC
potentials—an essential step prior to the running of the AC simulation. To overcome this each
1 nF capacitor was shunted by a 1 G� resistor (not shown in figure 2). This eliminated the
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(c)

Figure 3. (Continued)

DC floating node problem and introduced a negligible effect on the network AC response at
frequencies above about 10 Hz.

3.1. Simulation of a ‘dielectric’ 60% C 40% R random network

Simulation results of a random network in which 60% of the components were 1 nF capacitors
and the remainder were 1 k� resistors are shown in figure 3(a) in the form of the effective
normalized dielectric constants,ε′ andε′′, of the network against frequency. It is evident that
these network characteristics are similar to the familiar dielectric characteristics of solids shown
in figure 1. The frequency dependence of the phase of the voltageVout across the network is
shown in figure 3(b). At high and low frequencies this is∼−90◦, corresponding to the high and
low frequency plateaux inε′where the network behaves as an almost purely capacitive element.
At intermediate frequencies, however, the phase rises and is approximately constant between
∼10 kHz and 1 MHz. Across the same frequency rangeε′ andε′′ decline with frequency
in a power law fashion, of the type exhibited by the Cole–Davidson function, figure 1(b).
In this intermediate frequency range the electrical response of the network is close to that,
equation (5), obtained from the logarithmic mixing rule. In this network, where 60% of the
components are capacitors,α = 0.6 and equation (5) indicates a phase= −54◦ and bothε′ and
ε′′ ∝ ω−0.4. It can be seen that the simulation data, figures 3(a) and 3(b), are in good agreement
with these expectations in the intermediate frequency range. An appreciation of how the
capacitive and resistive components of AC conductance within the network vary with frequency,
shown in figure 3(c), leads to an understanding of the origins of the almost purely capacitive
characteristics at high and low frequencies. At high frequencies the capacitive component
conductanceωC � R−1, the resistive component conductance, and the resistive network links
are effective open circuits. The AC current becomes confined to a percolation ‘backbone’ of
capacitors between the ‘electrodes’. The percolation threshold for a 2D square network occurs
for a concentration of 50% of links occupied by a particular type of conductor. In this case of
60% capacitors there should be a well established percolation backbone of capacitors linking
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(a)

(b)

Figure 4. (a) The phase–frequency dependence of the voltage developed across random networks
of 512 (dashed) and 1058 (solid) components of which 60% were 1 k� resistors and 40% were
1 nF capacitors. The dotted line shows the logarithmic mixing formula, equation (5), prediction
for the networks. (b) The frequency dependence of the AC conductivities of the networks. (c) The
effective permittivity and dielectric loss of the 512 component network.

the electrodes. The magnitude of the high frequency plateau capacitance,∝ ε′, is that of the
capacitors in the percolation backbone alone, as the resistive links may be taken to be open
circuits. At low frequenciesωC � R−1 and the resistive links act as effective short circuits.
However, as only 40% of the components are resistive, a complete percolation path of resistors
will not be found between the electrodes. The AC conduction is still dependent on a capacitive
path between the electrodes. This will consist of the percolation backbone with many additional
capacitors being apparently added in parallel to it by the resistive links, which at low frequencies
act as short circuits. Consequently, the magnitude ofε′ on the low frequency plateau exceeds
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Figure 4. (Continued)

that on the high frequency plateau. At intermediate frequencies,ωC ∼ R−1, the random
series–parallel network, logarithmic mixing rule, AC response is produced, as discussed above.

3.2. Simulation of a ‘conductive’ 60% R 40% C random network

If the proportions of the network components are reversed so that 60% are resistors, the network
response becomes predominantly conductive. A 2D square network was randomly filled with
a total of 512 components comprising 1 k� resistors and 1 nF capacitors, numerically in the
ratio 6:4. The simulation frequency dependences of: the phase of the AC voltage across the
network; the network AC conductivity and the effective network dielectric constants are shown
in figures 4(a)–(c).

In contrast to the phase of the dielectric network, figure 3(b), the phase of the conductive
network, figure 4(a),∼0◦ at high and low frequencies, corresponding to the high and low
frequency plateaux in AC conductivity, figure 4(b). Since the network percolation threshold
of 50% is exceeded by the proportion of resistors in the network, a well developed percolation
backbone of resistors will be present in the network to carry currents between the ‘electrodes’,
earth andVout . At low frequencies the AC conductances of the capacitors are so low, figure 3(c),
that the capacitors may be regarded as being open circuits and the network AC conductivity
is that of the percolation backbone alone. At high frequencies the reverse is true, figure 3(c),
and the capacitors act as short circuit links that effectively add further resistors in parallel
to the percolation backbone and raise the AC conductivity to the high frequency plateau
level, figure 4(b). At intermediate frequencies, where the AC conductances of the resistors
and capacitors are comparable, the phase approximates the logarithmic mixing rule value of
−36◦, obtained from settingα in equation (5)= 0.4 as in this network only 40% of the
components are capacitors. Over the same frequency range the AC conductivity increases
with frequency in a power law fashion, equation (5), as∼ ∝ ω0.4. The AC conductivity
simulation results, figure 4(b), mirror the permittivity simulations shown in figure 3(a). The
dielectric representation of the 60%R 40%C network simulation data, figure 4(c), exhibits a
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(a)

(b)

Figure 5. (a) The phase–frequency dependence of the voltage developed across a random network
of 512 components of which 50% were 1 k� resistors and 50% were 1 nF capacitors. The dashed
line shows the logarithmic mixing formula, equation (5), prediction for the network. (b) The
effective permittivity and dielectric loss of the network.

Cole–Davidson-like permittivity,ε′, component but no peak in the dielectric loss,ε′′, due to the
non-zero DC conductivity of the conductive network. However, the intermediate frequency
response retains the characteristic common power law decay of bothε′ andε′′ as∼ ∝ ω−0.6,
predicted by equation (5).

3.3. Simulation of a percolation threshold 50%R 50%C random network

As was mentioned above, the characteristics of randomR–C networks at the percolation
threshold have been investigated in some depth [18]. For completeness, the results of a
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simulation of a network with the percolation threshold composition of 50%R and 50%C
are presented here in figure 5. In this network there were no percolation backbones of either
resistors or capacitors between the electrodes. The phase of the network output voltage,
shown in figure 5(a), is∼− 90◦ at low frequencies, dominated by the high impedances of the
capacitors along the path between the electrodes. At high frequencies the phase∼0◦, dominated
by the relatively high impedances of the resistors along the path between the electrodes. At
intermediate frequencies the phase takes the value∼45◦, expected from the logarithmic mixing
rule whereα = 0.5. The dielectric constants shown in figure 5(b) exhibit a Cole–Davidson-
like characteristic with a∼ ∝ ω−0.5 power law decay of bothε′ andε′′ across the intermediate
frequency range.

4. Discussion

There is a remarkable similarity between the dielectric response of the random network,
figure 3(a), and the Cole–Davidson response, figure 1(b), that characterizes many dielectric
data. This similarity becomes more pronounced where the random network simulation data is
restricted to a frequency range typical of that covered by experimental data, the area within the
box in figure 3(a). Consequently, we are led to suggest that a possible explanation of the Cole–
Davidson form of dielectric response is that that materials which exhibit these characteristics
are internally inhomogeneous, comprising what amounts to random networks of microscopic
capacitive islands and electrically conductive links. The physical natures of the capacitive and
conductive islands are, at this stage, largely a matter of conjecture. There is no problem in
identifying such regions in composites, such as the conducting polymers discussed above, and
in materials where conduction paths are known to develop due to the ingress of water or the
development of inter-granular conductive phases. That such paths may be present in a wide
range of dielectrics of all types is recognized to be contentious. The quantitative plausibility of
this suggestion may be judged by considering the materials properties that govern the frequency
range over which the characteristic power laws are observed. It has been shown that the power
law dispersions occur in the intermediate frequency range whereωC ∼ R−1 or, equivalently,
whereωε′ε0 ∼ σ in which ε′ is the permittivity of the dielectric material in the insulating
capacitive islands andσ is the electrical conductivity of the electrically ‘leaky’ regions. In a
typical polar dielectricε′ ∼ 10 and the condition becomesω ∼ 1010σ . Hence for a dielectric
to exhibit a power law about a typical frequency of 10 kHz, the conductivities of the resistive
regions∼10−5�−1 m−1. This magnitude of conductivity could arise from localized impurities
or defects in a dielectric solid. It is over an order of magnitude lower than the room temperature
intrinsic conductivity of the 1.1 eV energy gap semiconductor, silicon. In addition, it is likely
that such a conductivity in a leaky dielectric would arise from thermal excitations which would
lead to the conductivity having an Arrhenius temperature dependence. This, in turn, would
cause the characteristic network frequency,ωN = σ/ε′ε0, and consequently the dielectric loss
peak frequency to have an Arrhenius temperature dependence. The latter, of course, is widely
observed experimentally, as was mentioned in the introduction.

Alternatively, it is recognized that the Debye dielectric response, equation (1), can be
modelled by a seriesR–C circuit, settingτ = RC. Consequently, an inhomogenous dielectric
containing a phase with a Debye-like dielectric response in a frequency independent dielectric
matrix could be modelled as a random network of pure capacitors and circuits comprising a re-
sistor and capacitor coupled in series, to simulate the Debye phase. The resulting response char-
acteristics of such a network are essentially those of the randomR–C networks presented here.

The AC electrical characteristics of the conductive network have much in common
with those found experimentally in hopping ion conductors and weak electronic conductors.
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A detailed comparison of conductive network simulation results and the AC electrical
characteristics of ionic conductors has been presented elsewhere [23].

All the simulation data presented here were obtained from randomly filled 2D squareR–C
networks. The results of 3D network simulations are found to be qualitatively the same as
those of 2D network simulations [13, 18]. Here differences between the results of 2D network
simulations and the corresponding 3D network simulations are anticipated in the detail rather
than the general form of the responses which should be retained. For example, the percolation
threshold composition of a 3D square network, obtained by simulations, is 24.88% [24] whilst
it is 50% for a 2D square network.

The frequency ranges of the power law dispersions in network permittivity and dielectric
loss/AC conductivity obtained here are narrower than reported in some experimental studies
of the properties of solids. The extent of the frequency range, over which the power law holds
appears to be widest for the 50%R 50%C composition. This is similar to the results obtained
by Clercet al [18]. The extent of this power law has been found to be affected by the number
of components in the simulation network. The effects of increasing the number of components
from 512 to 1058 for the conductive 60%R 40%C network are shown in figures 4(a) and
4(b). Whilst the magnitude of the conductivity in the power law region in figure 4(b) is
unaffected the low frequency plateau conductivity is reduced and the high frequency plateau
conductivity is raised, resulting overall in an increase in the frequency range over which the
power law AC conductivity component is evident. The decrease in the low frequency plateau
conductivity is consistent with the increase in the side dimension of the square network (from
16 to 23 components) increasing the length and hence the net resistance of the percolation path
between the electrodes that accounts for the low frequency plateau conductivity. The increase
in the high frequency plateau conductivity arises from the increase in the number of resistive
components that become attached to the percolation backbone at high frequencies due to the
doubling of the number of components in the network. A similar increase in the extent of the
power law regions of the dielectric network has also been obtained by increasing the network
size. It seems clear that the extents of the power law regions are determined simply by the
relative magnitudes of the mixing rule, power law conductivities of the networks as a whole
and the conductivities of the percolation backbones that form between the electrodes at high
and low frequencies. Work is in progress to clarify the effects of composition and size on the
extent and location of the power law frequency region. We would anticipate similar behaviour
with the size of three-dimensional random networks, with the difference that the magnitude
of the mixing rule, power law conductivity should increase with the side dimension of the
network.

Dyre [25] has shown for a different type of network that a broadening in the power law
frequency range results from a distribution of effective component parameters,ε andσ . In
a solid whereσ is thermally activated, a subtle distribution in energy barriers, resulting from
local energetic variations caused by defects or impurities, can lead toσ having a substantial
range of values. This might then lead to the effective mixing of the responses of networks
characterized by a similar wide range ofωN values and an extension of the power law response
frequency range.

5. Conclusions

The effective dielectric response of a 2D square network randomly filled with resistors or
capacitors exhibits many characteristics that are very similar to the ‘universal dielectric
responses’ of solids. We are led to suggest that the dielectric characteristic of solids are, in
many cases, caused by the solid being internally inhomogeneous on a microscopic scale, being
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effectively a random microscopic network of dielectric regions and regions that are electrically
conducting. The ‘universal power laws’ arise naturally from this treatment with power law
exponents related directly to the relative proportions of capacitive and conductive material in the
dielectrics. The thermal activation of the dielectric loss peak frequency may be associated with
that of the dielectric leakage rather than being attributed to a fundamental dipolar relaxation
rate. It is perhaps an unfortunate coincidence that the Debye dielectric responses and those of
randomR–C networks are so similar. There are a few cases [26, 27] where genuine Debye
responses have been measured in solids. We suggest that the key distinction of these is the
very different form of the response on the high frequency side of the dielectric loss peak.
Where the dielectric effects are caused by fundamental dipolar relaxation phenomena alone
the permittivity,ε′, and the dielectric loss,ε′′, have the very different frequency dependences
of ω−2 andω−1, whilst both have the sameωα−1 frequency dependency where a random
network of dielectric and conductive islands is involved. The random network model seems
applicable to all classes of materials, possibly accounting for the ubiquity of the dielectric
response of solids. It may also account for the anomalous power laws reported for other types
of phenomenon.
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